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Dynamics of a flexible magnetic chain in a rotating magnetic field
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The model of an elastic magnetic rod is applied for a study of a behavior of the flexible magnetic particle
chain in a rotating magnetic field. By numerical simulation it is shown that behavior of a flexible magnetic
chain is characterized by the existence of a critical frequency beyond which the dynamics of the rod is periodic
with subsequent stages of bending and straightening. The value of the critical frequency found is explained by
a simple model. Below the critical frequency the chain is bent and rotates synchronously with a field. It is
illustrated that in particular cases the considered model reproduces phenomena observed experimentally and
numerically for the magnetic particle chains in magnetorheological suspensions. It is emphasized that the
present approach gives the general framework for the description of different phenomena in magnetorheologi-
cal suspensions.
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[. INTRODUCTION the paramagnetic particles, the relatidn for the curvature
elasticity constant of the chain of the particles with the di-
The dynamics of extended objects like elastic rods hagmeterd=0.78um and the length 3@m aligned along the
recently obtained a considerable inter¢dt-5]. This is  magnetic field lines at the field strengthy,=310 Oe[19]
caused by the understanding of the behavior of different filagives the value about 167 ergcm which has the order of
ments in biological system$6-9] and macromolecules Magnitude of the curvature elasticity found in the experiment
[10,11). The objects behaving like flexible rods appear alsd19]- The curvature elasticity of the chain of magnetic par-
in the magnetorheological suspensions where the chainlikiicles connected with the another linkglutaraldehydgare
aggregates form due to magnetic interactipt®—15. The stlff_er_[18] an(_:I for those chains the contribution of the mag-
chains of magnetic particles have interesting biological ap/€lic interactions could be neglected. It should be also re-
plications[16]. We will illustrate in this paper that behavior Marked that the curvature elasticity depends on the angle

of these objects under the action of the rotating magnetiwhich the magnetic field makes with the chain causing quite

field may be understood by the model of an inextensibk;i:nteresung peculiarities in the behavior of the magnetic

magnetic rod proposed in RdfL7]. The filamentary elastic thains which will be considered elsewh¢2®]. Another pe-

ic ob; t other kind ¢ d linki i - culiarity of the magnetic chains is connected with the mag-
magnetic objects of other kind are formed linking miCrosizengqtic torque arising when the magnetic field is not parallel to

functionalized paramagnetic particles with some polymerspe chain. The magnetic field torque is responsible for the
[18,19. In this way a new system possessing the features gbtation of the magnetic chains under the action of the rotat-
flexible polymers with strong magnetic properties is createding magnetic field 12—15. For the dynamics of the mag-
Elastic properties of such objects, using optical trappinthetic chain in the rotating field several interesting features
technique, were determined recenith®]. It was found that are observed as the formation of bent configuration and
the curvature elasticity consta of the linked magnetic breaking at increase of the angular velocity of the field rota-
chain determined by the bending, compression, and relaxion. Balance of the chain breaking and growth due to axial
ation experiments depending on the linker molecules is abouwtoalescence leads to the characteristic chain length depen-
10~ 12— 10" ergcm. It should be mentioned that the curva-dence on a rotating field frequenay Y observed in differ-
ture elasticity constant of the magnetic chain has contribuent experiments with magnetorheological suspensions. In the
tion due to the magnetic interaction forces which can bdirst section of the present work following R¢fL7] we for-
estimated according to the relatif20] mulate the model for the elastic magnetic chain in a rotating
magnetic field. The numerical simulation results, illustrating
(pen—1)2 5 its behavior, are given in the following section. Further the
Cn=—""%_—Ho |H(F) l, (1) obtained results are considered from perspective of their ap-
plication to the description of the behavior of the chains of
wherel = ra%/4 is the inertia moment of the cross section of Magnetic particles in magnetorheological suspensions and
the chain approximated by the cylinder with the radius good' q'uantltatlve agreement with available experimental
Estimating the magnetic permeability of the chaip, as 1~ dat@ is illustrated.
+3(u—1)/u+2, whereu is the magnetic permeability of Il MODEL
According to the Kirchhoff model the energy of an elastic
*Email address: aceb@tesla.sal.lv rod, including the magnetic term, has the fofgi]
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. 1cf 1 i szazszgf o f Al but the condition of a local inextensibility has the form
27) R? +1 ’ w1
(2) 7+vn§—0. (10)

where the term with a Lagrange multiplidr accounting for |, the case of the rotating field in relatio®), (6), and (8)
the local inextensibility is introduced. HeReis the radius of

the curvature of the centerlingg=1+4my, x is the mag-

netic susceptibility of the rod; is the tangent to the center-
line of the rod. Considering the variation ER) at the

changing position of the centerlimé=r+ & we have

for the angled we must taked— wt, whered is the angle
which the tangent makes withaxis of the laboratory set of
coordinates. Then introducing the phase fagwt— 6 of the
tangent from the magnetic field direction and introducing the
characteristic time scate= /L%/C, the length scalé, where

2L is the length of the rod, the following dimensionless

SE=[M 5@]+[Ft§t]+[Fn§n]_f ann‘“‘f K.&dl. equations for the phase lag and the tension of the rod are
obtained:
()
=B+ B +3(BHD+(BA)+ A B —Cm(sin 2
Here[ ] denotes the difference of the values at the ends of the O7=Bit Buitz2(B))+(BA) I+ A B~ Cmisin 28,
rod, &, and &, are components of the Lagrange displacement +Cm(B))?sin(2pB) (11

in the directions of the normal and tangent to the centerline,

respectively, bube=d¢,/d1 — & /R is the angle of the tan- and
gent angle rotation at the Lagrange displacemémté’he 20 A 1,3 2
tangent and normal vectors are connected according to the BiA=An==PBi(Bu+zp7)+ CmB{2 cos

Frenet equationlt/dl= — 1/Rn, wherel is the arc length of +Cm(B, sin(2B)), . (12)

the rod’s centerline. The binormal to the centerline is de- 2012 212 . ,
Here Cm=2my“Hyma“L“/(n+1)C is the magnetoelastic

flned. byb=[t><an]. Only mouons of the.rod in the plang "€ number characterizing the ratio of the magnetic and elastic
considered and = (cos6,sin6), whered is the angle which  forces. Taking for the magnetic permeability, the radius of
the tangent makes with the magnetic field direction. Accordghain and the curvature elasticity constant the values given
ing to the relation3) the foIIgwmg expressions for the com- apove for the parameter Cm at the chain lengthu80 in the
ponents of the body forc&, stresses= and momentum magnetic fieldH,=10? Oe we have the value about 30. The

stressed =Mb are valid, set of boundary conditions necessary for the resolution of the
Egs. (11) and (12) follow from the absence of the stresses
1\  2m2a?y?H3 and momentum stresses on the free ends of the rod which
Fn—C ﬁ | TSII’\(ZG), (4) gives
— B +Cmsin28=0, (13
C
Ft:‘(ﬁ“‘)* ® Bi=0, (14
and
_dF, F _c 1 11 N 1
~ar R OCUR 2R TR A=0, 15
2 282 v2H?2 . atl==1.
7 +X1 0 d(SIZ(IZ 0)), (6) The set of equation&1) and(12) with the boundary con-
)7

ditions Egs.(13)—(15) is solved numerically by the implicit
b5 212 scheme approximating derivatives by the finite differences.
dFy F, 1 2ma”x“Hg The nonlinear equations for the values of the tangent angle at

Kegr Tr=MTR ut1 sin26), (7} new time step are solved by the Newton method. Tenion
for the current time step is found by tridiagonal solver.
C
M=-x»- ®) IIl. NUMERICAL SIMULATION RESULTS

] ) . In Ref.[17] it was found that besides the trivial straight
The simplest case of Rouse dynamics for the foeK [6]  configuration of the rod in the static magnetic field “U” like
is taken, whereg] is the friction coefficient of the chain per turns are also possible as stable configurations. Such con-

length unit. The equation for the tangent angle reads figurations do not exist under the action of the rotating field.
The process of the transformation of U like turn in the rotat-

%: dun Uy ) ing field is shown in Fig. 1. We see that the process of the

dt dJ R hairpin transformation occurs with the constant velocity of
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) ) o ) ) FIG. 3. Stationary rod configurations in rotating field from point
FIG. 1. Relaxation of U turn in rotating field from point of view ¢ ey of the set of coordinates connected with the figthgnetic
of the set of coordinates connected with the figldagnetic field  fgq strength is along axis. Cm=25, o7=10(1), 3a2), 503),
strength is alongx axig. Cm=25; w7r=50. t=0.00871), 60.64).
0.01742), 0.026@4), 0.03475), 0.04346), 0.05217), 0.06088),

0.06949), 0.078110), 0.086811). arises similarly to what has been observed in numerical

simulation of viscous magnetic drd@2]. After process of
the U turn tip propagation. This finally ends with the fastthe propagation of U turns the abrupt rotation of the ends of
process of the straightening of the rod. These features of thge rod takes place. As a result rather interesting periodic
hairpin relaxation in the rotating field are shown in Fig. 2. regime of the rod rotation arises. This sequence of the events
From Fig. 1 we see that after relaxation process a stationany jllustrated in Fig. 5 from the point of view of the labora-
state of the elastic rod rotating with the angular velocity oftory set of coordinates. At high frequencies of the field rota-
the field is established. The extent of the bending of the rogi,, the mean angular velocity of the chain rotation in the
increases with the frequency of the rotating field. This iS50 rat0ry set of coordinates is small. The dependence of the
illustrated by Fig. 3 where stationary configurations of theangular velocity in the center of the rod on time for the
elastic rod for the different values of the rotating field fre- periodic regime a€m=25 =500 illustrates this in Fig. 6.
guency are shown. We see that the phase lag in the center Bbr the mean angular velocity
the rod increases with the frequency of the rotating field. The
last configuration in Fig. 3 corresponds to the frequency _ 1 (TrdB
close to the critical for given Cm when no stationary state of wT= wT( 1- p Hdt) )
the rod motion arises. The distribution of the tension along 0
the rod for one stationary configuration is shown in Fig. 4.,

Reaching the critical frequency the tangent angle in the cen! this case we hava)/w=0.002_2. _Similarly to the asyn-
ter of droplet abruptly switches and “S” like configuration chronous regime of the magnetic dipole under the action of

(16)
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FIG. 2. Position of the U turn tip along the chain in dependence FIG. 4. Distribution of tension along the rod. Gn25, ot
on time in the rotating field. Cm25, w7=50. =50.

021404-3



A. CEBERS AND I. JAVAITIS PHYSICAL REVIEW E69, 021404 (2004

D

&~
<

35

15 17 19 21 23 25
Cm

FIG. 7. Critical frequency in dependence on the magnetoelastic
parameter.

integrated and accounted for the boundary condition on the
free ends that results in

Cm
A= 7(008(2/3) —C0g28y)), (17)

FIG. 5. Configurations of flexible magnetic chain from point of . . .
view of the Iabo?atory set of coordinategs. Straight line sr?ows thehereﬁ(?:,B(t 1). With tha_t S'mP'e expression fax the last
magnetic field direction. Cm25, ©7=300. t=0.01041), terms in Eq.(11) can be simplified what gives
0.013022), 0.01543), 0.01824), 0.02085), 0.02346), 0.026@7), 1 cm
0.02848). — Z(R3), | ——
7= B+ Bun + 5 (B ( 5 C042B0)B
the rotating field 23] forward and backward rotations of the 3Cm
flexible chain occur leading at high angular velocities of the +—sin(2,8)) . (18
field to observed small overall rotation. 4 1

The value of the critical frequency at which the switching ) ) )
of the tangent direction takes place depends linearly, a¥ this form the equation for the tangent angle is close to
shown in Fig. 7, on the magnetoelastic number Cm. ThiFonsidered in Re{.22] for the dynamics of the viscous drop
means that similarly to what is taking place in the case of thd & rotating field. The bending elasticity term in H4.8)
magnetic droplet with finite surface tension the critical fre-Similarly to the viscous momentum stresses in R2g] for
quency is determined by Mason numi22]. Thus results in large Cm is playing the regularizing role. In steady case
Fig. 7 can be explained by simple model. Assuming thatvhen Cm is large the contribution of th(_a elast|C|'§y terms can
tangential motion is negligible we can take=0. Then Eq.  P€ Neglected and E¢18) has the analytical solutiof22]
(7) introducing dimensionless quantities and anglean be 3cm
5~ G cod2B9) pHsin2p)=30r(1-12).  (19)

750

700 | The critical value ofw 7 for the formation of the jump of the

a0 | | tangent angle can be found from the value of the first maxi-
mum of the functionF(8)=%cos(28,)+sin(28). This for

the critical frequency(taking cos(By)=1 for large Cnj
gives

600 [

dp/clt

ko

_c 1 1
(w7).=Cm 5 ~5arcCo 3

+ (20)

3

21)

which shows that for enough large Cm£),=2.37 Cm in
good agreement with data given in Fig. 7. The dependence of
. . . . . the angle in the center of the droplet on Cm at the critical
005 0.6 007 0.08 0.09 0.1 frequency is less trivial and the curve with minima has been
' obtained in numerical calculations as shown in Fig. 8. Nev-
FIG. 6. Angular velocity in the center of the rod in dependenceertheless the values shown in Fig. 8 are very close to the
on dimensionless time in rotating frame. &5, o r="500. value obtained from the first maximum of the function

300
0.
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57 r As a result the torque per length ukit K/2a is
56 6m2
. k= sin2(¢—0).
55 | . (2a)*
S 54 | c o, . It is easy to see that the normal shearing fokge= — 2F,

=2/2a9Ul96=—6m?/(2a)* sin 2(p— 6) arising due to the

53 | magnetic interactions between neighboring particles is equal

. . to its valueF,=—k in the model of an inextensible mag-
52 | . netic rod without momentum stresses. In the case when the
curvature radius of the rod is large enough in comparison
51 . . . . . with its length the tension in the rofl is determined by the
15 17 19 21 23 25 shearing normal force
Cm
1 2
FIG. 8. Tangent angle in the center of the rod at critical fre- A== sin2(6— @), (21
guency. R (2a)*

N _ which corresponds to that obtained from the relation (&g.
F.(B), B.=3(m—arccosg)), which corresponds to the when the following substitution
angle B,~54.7 deg. More complex dependence shown in
Fig. 8 may be connected with the fact of more complicated 2m2a?y?H:  6m?
behavior of the tension in the rod than given by E&j7). 1 7
Nevertheless the main peculiarities of the flexible chain dy- K (2a)
namics may be understood by the simple model given above?S done. Introducing the phase Ifg= ¢ — 6= wt— 6 Eq.(21)

can be integrated as

(22

IV. DISCUSSION OF THE EXPERIMENTAL RESULTS
OF THE MAGNETIC CHAIN DYNAMICS 6m? 1
IN MAGNETORHEOLOGICAL SUSPENSIONS = 2 e 5
a

(cos28-1) (23

The model of an inextensible magnetic rod with some
curvature elasticity, arising from the magnetic interactions, id 8(*1)=0 since the normal shearing force at the ends of
also applicable to a chain of magnetic particles in a rotatinghe chain vanishdsin a steady case when the rod rotates
field of a low frequency when a chain moves synchronouslysynchronously with the applied field
with a field. In this case it turns out that the tension in the
chain arising due to the shearing normal forces is less than %:
magnetic force holding the particles together and the chain dl
behaves as an inextensible rod. In the region of the compres- . . . .
sion stresses they are balanced by the reaction forces due 18IS relation, accounting for the expression of the normal
the hard cores of the magnetic particles. Let us consider th{"c€ Ed.(6), when the force due to the curvature elasticity is

chain of magnetic dipoles with hard core radmsLet the —nedlected, gives

.

angle of the chain axis witlk axis beé but the angle of the d 6m? d
field ¢. If the external magnetic field strength is larger than — | AB— om —sin 2,8) ={w. (24)
magnetic field strength due to neighboring particles in the dl (2a)* dl

chain then the angle which the magnetization makes with o _ ) _
x axis is close tod. The energy of the particle interacting Substituting the expressio23) into the relation(24) we

with its two neighbors in the chain is obtain
E=—-mHycogo—a)+2U, d? 6m?> 1 3 6m?
— |~ 5B 7 SN2 |={w.
where di*l  (2a)*2" 4 (2a)
2 As a result the equation for the tangent angle reads
U= 1-3 cog(a—0)).
(2a)3( ( ) 6m* . ) 1o
> 2(28in2B+B)={w(L~17). (25
The conditiondE/da= 0 for the magnetic torque on the par- (28)
ticle K gives This is the relation obtained in a model of an inextensible
6m? magnetic rod when the curvature elasticity of the rod is ne-
K=mH,sin(¢—a)= sin2(o— 6). glected. Since the functioR(8)= 2 sin 28+ on the left-
(2a)3 hand side of Eq(25) is not monotonous there is the critical
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frequency at which the jump of tangent angle takes place. Adlistribution of the chains arising due to the competition of

this condition disintegration of chain occurs. The value of thethese processes remains unknown at the present moment it

critical frequency can be found from the maximal value ofseems impossible to make quantitative comparisons with ex-

function F(B) which takes place aB.= m/2— 3arccos 1/3. isting experimental data on birefringence and dichroism of

Accounting for relationf=4m7y/InL/a+c [6] and express- the magnetorheological suspensions in a rotating field

ing the magnetic moment of particle as=M4/3a3, [12,14.

whereM = x,H, [15] we have for the critical frequency of Concerning the relatiof22) it should also be remarked

the chain ofN=2L/2a particles the relation that, apart from term3 on the left side, it is close to the
relation obtained in Refl15] in the frame of the discrete
model of the magnetic particle chain. This relation written in

. (26)  terms of the notations of Ref15] is (Ma’ =3/327Ma)

L
MaN?=2($ sin 28,+ ;) In~ +c

Here the Mason numbevla=127w/M? according to the sin28= Ma’NZ(l—(—)Z)

notation of the papgr4] is introduced. Relatio23) shows 9(InL/a+c) L)/

that with the increase of the Mason number the number of

the particlesN which can be held together by attractive mag-where the right-hand side differs by multiplier 2/9{fa

netic force diminishes as +c) from the relation given in Ref.15]. It should be also
remarked that since the functidf(3) on the left-hand side
const of the relation(22) is no monotonous the hysteretic phenom-
= \lm, ena in the range of the angles in the center of a chain

[11°,54° are possible. This behavior possibly has been re-
marked in the numerical simulations of the chain of the mag-
netic particles in Ref.15] and the terms of brittle and ductile
failure for two kinds of the chain breaking connected with

ber of aggregated magnetic particles starts at the Masotrji‘h'st m/steregcl b?haw_or V\{ere.ér;troducedi_ Thuds we bfl'e\ée
number value about 1. It should be noted that at critical valué at the model of an Inextensibie magnetic rod can aiso be

of the Mason number the condition for existence of the chairgPPlied to the description of the chains of unlinked magnetic
of the magnetic particles particles held together by the magnetic attraction forces. This

model, extended to account for different details, may play
the same role in understanding of the behavior of the mag-
netorheological suspensions which Kirchhoff’s model of the
elastic rod plays in the study of DNA and other macromol-

whereconstaccording to the relatiof23) has order of mag-
nitude 6. This is what is observed in experime(gse, for
example, Fig. 3 in Ref.14]) where diminishing of the num-

A+F, <0 (27)

is satisfied, wher&, is the magnetic interaction force

ecules[25].
2
- (Z_l:: 3m -(1-3 (o 0)) V. CONCLUSIONS
(2a) We have shown that the flexible magnetic chains have
3m2 quite a rich behavior under the action of the rotating mag-
= (—%-2cos2B), netic field. At low frequency of the magnetic field the rod has
(2a)* a bent shape rotating synchronously with the applied field.

) ) ] . The phase lag of the center of the rod increases with the
holding particles tqgether. Indeed. gccordmg to the relatloqrequency of a rotating field. At the critical frequency
(19) the left-hand side of the conditiaf27) is which—for the considered range of parameters—is propor-

tional to the square of the field strength asynchronous regime
3 COSZB) 0 of the rod motion arises. This may be described by a simple
2 2 ' model neglecting tangential motion of the rod. The param-
eters of the considered model correspond to the real existing
which justifies the applicability of the model of an inexten- systems and the results of our simulations can be checked
sible magnetic rod for the description of the chain of mag-experimentally. It is illustrated in particular cases that the
netic particles in a rotating field. For the Mason numberconsidered model reproduces the phenomena observed ex-
larger than critical the chain breaks. We believe that the fullperimentally for the magnetic particle chains in magne-
model for description of this phenomenon should account fotorheological suspensions. The model gives a general frame-
the anisotropy of the bending elasticity of the chain of thework for the description of various phenomena in
magnetic particles which will be considered elsewHe@. magnetorheological suspensions.
It should be remarked that breaking of the chains, which are
long enough, sustains some kind of the self-organized critical
state[24] in which the chains are growing due to axial coa-
lescence on one hand and are breaking if the size is larger This work was supported by Grant No. LU 3 of Univer-
than critical on the other hand. Since the characteristic sizsity of Latvia.

3m?
(2a)*
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