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Dynamics of a flexible magnetic chain in a rotating magnetic field
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The model of an elastic magnetic rod is applied for a study of a behavior of the flexible magnetic particle
chain in a rotating magnetic field. By numerical simulation it is shown that behavior of a flexible magnetic
chain is characterized by the existence of a critical frequency beyond which the dynamics of the rod is periodic
with subsequent stages of bending and straightening. The value of the critical frequency found is explained by
a simple model. Below the critical frequency the chain is bent and rotates synchronously with a field. It is
illustrated that in particular cases the considered model reproduces phenomena observed experimentally and
numerically for the magnetic particle chains in magnetorheological suspensions. It is emphasized that the
present approach gives the general framework for the description of different phenomena in magnetorheologi-
cal suspensions.
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I. INTRODUCTION

The dynamics of extended objects like elastic rods
recently obtained a considerable interest@1–5#. This is
caused by the understanding of the behavior of different fi
ments in biological systems@6–9# and macromolecules
@10,11#. The objects behaving like flexible rods appear a
in the magnetorheological suspensions where the chain
aggregates form due to magnetic interactions@12–15#. The
chains of magnetic particles have interesting biological
plications@16#. We will illustrate in this paper that behavio
of these objects under the action of the rotating magn
field may be understood by the model of an inextensi
magnetic rod proposed in Ref.@17#. The filamentary elastic
magnetic objects of other kind are formed linking micros
functionalized paramagnetic particles with some polym
@18,19#. In this way a new system possessing the feature
flexible polymers with strong magnetic properties is creat
Elastic properties of such objects, using optical trapp
technique, were determined recently@19#. It was found that
the curvature elasticity constantC of the linked magnetic
chain determined by the bending, compression, and re
ation experiments depending on the linker molecules is ab
10212210214 erg cm. It should be mentioned that the curv
ture elasticity constant of the magnetic chain has contri
tion due to the magnetic interaction forces which can
estimated according to the relation@20#

Cm5
~mch21!2

2p
H0

2 lnS 2L

d D I , ~1!

whereI 5pa4/4 is the inertia moment of the cross section
the chain approximated by the cylinder with the radiusa.
Estimating the magnetic permeability of the chainmch as 1
13(m21)/m12, wherem is the magnetic permeability o
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the paramagnetic particles, the relation~1! for the curvature
elasticity constant of the chain of the particles with the
ameterd50.78mm and the length 30mm aligned along the
magnetic field lines at the field strengthH05310 Oe @19#
gives the value about 10212 erg cm which has the order o
magnitude of the curvature elasticity found in the experim
@19#. The curvature elasticity of the chain of magnetic p
ticles connected with the another linker~glutaraldehyde! are
stiffer @18# and for those chains the contribution of the ma
netic interactions could be neglected. It should be also
marked that the curvature elasticity depends on the an
which the magnetic field makes with the chain causing qu
interesting peculiarities in the behavior of the magne
chains which will be considered elsewhere@20#. Another pe-
culiarity of the magnetic chains is connected with the ma
netic torque arising when the magnetic field is not paralle
the chain. The magnetic field torque is responsible for
rotation of the magnetic chains under the action of the ro
ing magnetic field@12–15#. For the dynamics of the mag
netic chain in the rotating field several interesting featu
are observed as the formation of bent configuration a
breaking at increase of the angular velocity of the field ro
tion. Balance of the chain breaking and growth due to ax
coalescence leads to the characteristic chain length de
dence on a rotating field frequencyv21/2 observed in differ-
ent experiments with magnetorheological suspensions. In
first section of the present work following Ref.@17# we for-
mulate the model for the elastic magnetic chain in a rotat
magnetic field. The numerical simulation results, illustrati
its behavior, are given in the following section. Further t
obtained results are considered from perspective of their
plication to the description of the behavior of the chains
magnetic particles in magnetorheological suspensions
good quantitative agreement with available experimen
data is illustrated.

II. MODEL

According to the Kirchhoff model the energy of an elas
rod, including the magnetic term, has the form@21#
©2004 The American Physical Society04-1
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E5
1

2
CE 1

R2
dl2

2p2a2x2H0
2

m11 E ~hW tW !2dl2E Ldl,

~2!

where the term with a Lagrange multiplierL accounting for
the local inextensibility is introduced. HereR is the radius of
the curvature of the centerline;m5114px, x is the mag-
netic susceptibility of the rod,tW is the tangent to the cente
line of the rod. Considering the variation Eq.~2! at the
changing position of the centerlinerW85rW1jW we have

dE5@Mdw#1@Ftj t#1@Fnjn#2E Knjndl2E Ktj tdl.

~3!

Here@ # denotes the difference of the values at the ends of
rod, jn andj t are components of the Lagrange displacem
in the directions of the normal and tangent to the centerl
respectively, butdw5]jn /] l 2j t /R is the angle of the tan
gent angle rotation at the Lagrange displacementsjW . The
tangent and normal vectors are connected according to
Frenet equationd tW/dl521/RnW , wherel is the arc length of
the rod’s centerline. The binormalbW to the centerline is de
fined bybW 5@ tW3nW #. Only motions of the rod in the plane ar
considered andtW5(cosu,sinu), whereu is the angle which
the tangent makes with the magnetic field direction. Acco
ing to the relation~3! the following expressions for the com
ponents of the body forceKW , stressesFW and momentum
stressesMW 5MbW are valid,

Fn5CS 1

RD
l

1
2p2a2x2H0

2

m11
sin~2u!, ~4!

Ft52S C

2R2
1L D , ~5!

Kn5
dFn

dl
2

Ft

R
5CS S 1

RD
l l

1
1

2

1

R3D 1L
1

R

1
2p2a2x2H0

2

m11

d„sin~2u!…

dl
, ~6!

Kt5
dFt

dl
1

Fn

R
52L l1

1

R

2p2a2x2H0
2

m11
sin~2u!, ~7!

M52
C

R
. ~8!

The simplest case of Rouse dynamics for the rodzvW 5KW @6#
is taken, wherez is the friction coefficient of the chain pe
length unit. The equation for the tangent angle reads

du

dt
5

]vn

] l
2

v t

R
~9!
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but the condition of a local inextensibility has the form

]v t

] l
1vn

1

R
50. ~10!

In the case of the rotating field in relations~4!, ~6!, and~8!

for the angleu we must takeũ2vt, where ũ is the angle
which the tangent makes withx axis of the laboratory set o
coordinates. Then introducing the phase lagb5vt2 ũ of the
tangent from the magnetic field direction and introducing
characteristic time scalet5zL4/C, the length scaleL, where
2L is the length of the rod, the following dimensionle
equations for the phase lag and the tension of the rod
obtained:

vt5b t1„b l l l l 1 1
2 ~b l

3! l…1~b lL! l1L lb l2Cm~sin 2b! l l

1Cm~b l !
2 sin~2b! ~11!

and

b l
2L2L l l 52b l~b l l l 1

1
2 b l

3!1Cmb l
22 cos 2b

1Cm„b l sin~2b!…l . ~12!

Here Cm52px2H0
2pa2L2/(m11)C is the magnetoelastic

number characterizing the ratio of the magnetic and ela
forces. Taking for the magnetic permeability, the radius
chain and the curvature elasticity constant the values gi
above for the parameter Cm at the chain length 60mm in the
magnetic fieldH05102 Oe we have the value about 30. Th
set of boundary conditions necessary for the resolution of
Eqs. ~11! and ~12! follow from the absence of the stress
and momentum stresses on the free ends of the rod w
gives

2b l l 1Cm sin 2b50, ~13!

b l50, ~14!

and

L50, ~15!

at l 561.
The set of equations~11! and~12! with the boundary con-

ditions Eqs.~13!–~15! is solved numerically by the implicit
scheme approximating derivatives by the finite differenc
The nonlinear equations for the values of the tangent ang
new time step are solved by the Newton method. TensionL
for the current time step is found by tridiagonal solver.

III. NUMERICAL SIMULATION RESULTS

In Ref. @17# it was found that besides the trivial straig
configuration of the rod in the static magnetic field ‘‘U’’ like
turns are also possible as stable configurations. Such
figurations do not exist under the action of the rotating fie
The process of the transformation of U like turn in the rot
ing field is shown in Fig. 1. We see that the process of
hairpin transformation occurs with the constant velocity
4-2
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the U turn tip propagation. This finally ends with the fa
process of the straightening of the rod. These features o
hairpin relaxation in the rotating field are shown in Fig.
From Fig. 1 we see that after relaxation process a station
state of the elastic rod rotating with the angular velocity
the field is established. The extent of the bending of the
increases with the frequency of the rotating field. This
illustrated by Fig. 3 where stationary configurations of t
elastic rod for the different values of the rotating field fr
quency are shown. We see that the phase lag in the cent
the rod increases with the frequency of the rotating field. T
last configuration in Fig. 3 corresponds to the frequen
close to the critical for given Cm when no stationary state
the rod motion arises. The distribution of the tension alo
the rod for one stationary configuration is shown in Fig.
Reaching the critical frequency the tangent angle in the c
ter of droplet abruptly switches and ‘‘S’’ like configuratio

FIG. 1. Relaxation of U turn in rotating field from point of view
of the set of coordinates connected with the field~magnetic field
strength is alongx axis!. Cm525; vt550. t50.0087(1),
0.0174~2!, 0.0260~4!, 0.0347~5!, 0.0434~6!, 0.0521~7!, 0.0608~8!,
0.0694~9!, 0.0781~10!, 0.0868~11!.

FIG. 2. Position of the U turn tip along the chain in dependen
on time in the rotating field. Cm525, vt550.
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arises similarly to what has been observed in numer
simulation of viscous magnetic drop@22#. After process of
the propagation of U turns the abrupt rotation of the ends
the rod takes place. As a result rather interesting perio
regime of the rod rotation arises. This sequence of the ev
is illustrated in Fig. 5 from the point of view of the labora
tory set of coordinates. At high frequencies of the field ro
tion the mean angular velocityv̄ of the chain rotation in the
laboratory set of coordinates is small. The dependence of
angular velocity in the center of the rod on time for th
periodic regime atCm525,v5500 illustrates this in Fig. 6.
For the mean angular velocity

v̄t5vtS 12
1

pE0

T/2db

dt
dtD , ~16!

in this case we havev̄/v50.0022. Similarly to the asyn
chronous regime of the magnetic dipole under the action

e

FIG. 3. Stationary rod configurations in rotating field from poi
of view of the set of coordinates connected with the field~magnetic
field strength is alongx axis!. Cm525, vt510(1), 30~2!, 50~3!,
60.6~4!.

FIG. 4. Distribution of tension along the rod. Cm525, vt
550.
4-3
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the rotating field@23# forward and backward rotations of th
flexible chain occur leading at high angular velocities of t
field to observed small overall rotation.

The value of the critical frequency at which the switchi
of the tangent direction takes place depends linearly,
shown in Fig. 7, on the magnetoelastic number Cm. T
means that similarly to what is taking place in the case of
magnetic droplet with finite surface tension the critical fr
quency is determined by Mason number@22#. Thus results in
Fig. 7 can be explained by simple model. Assuming t
tangential motion is negligible we can takeKt50. Then Eq.
~7! introducing dimensionless quantities and angleb can be

FIG. 5. Configurations of flexible magnetic chain from point
view of the laboratory set of coordinates. Straight line shows
magnetic field direction. Cm525, vt5300. t50.0104(1),
0.01302~2!, 0.0156~3!, 0.0182~4!, 0.0208~5!, 0.0234~6!, 0.0260~7!,
0.0286~8!.

FIG. 6. Angular velocity in the center of the rod in dependen
on dimensionless time in rotating frame. Cm525, vt5500.
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integrated and accounted for the boundary condition on
free ends that results in

L5
Cm

2
„cos~2b!2cos~2b0!…, ~17!

hereb05b(61). With that simple expression forL the last
terms in Eq.~11! can be simplified what gives

vt5b t1b l l l l 1
1

2
~b l

3! l2S Cm

2
cos~2b0!b

1
3Cm

4
sin~2b! D

l l

. ~18!

In this form the equation for the tangent angle is close
considered in Ref.@22# for the dynamics of the viscous dro
in a rotating field. The bending elasticity term in Eq.~18!
similarly to the viscous momentum stresses in Ref.@22# for
large Cm is playing the regularizing role. In steady ca
when Cm is large the contribution of the elasticity terms c
be neglected and Eq.~18! has the analytical solution@22#

3Cm

4
„

2
3 cos~2b0!b1sin~2b!…5 1

2 vt~12 l 2!. ~19!

The critical value ofvt for the formation of the jump of the
tangent angle can be found from the value of the first ma
mum of the functionF1(b)5 2

3 cos(2b0)1sin(2b). This for
the critical frequency@taking cos(2b0)51 for large Cm#
gives

~vt!c5CmXp2 2
1

2
arccosS 1

3D1
2A2

3 C, ~20!

which shows that for enough large Cm (vt)c52.37 Cm in
good agreement with data given in Fig. 7. The dependenc
the angle in the center of the droplet on Cm at the criti
frequency is less trivial and the curve with minima has be
obtained in numerical calculations as shown in Fig. 8. N
ertheless the values shown in Fig. 8 are very close to
value obtained from the first maximum of the functio

e

e

FIG. 7. Critical frequency in dependence on the magnetoela
parameter.
4-4
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F1(b), bc5 1
2 „p2arccos(13 )…, which corresponds to the

angle bc'54.7 deg. More complex dependence shown
Fig. 8 may be connected with the fact of more complica
behavior of the tension in the rod than given by Eq.~17!.
Nevertheless the main peculiarities of the flexible chain
namics may be understood by the simple model given ab

IV. DISCUSSION OF THE EXPERIMENTAL RESULTS
OF THE MAGNETIC CHAIN DYNAMICS

IN MAGNETORHEOLOGICAL SUSPENSIONS

The model of an inextensible magnetic rod with som
curvature elasticity, arising from the magnetic interactions
also applicable to a chain of magnetic particles in a rotat
field of a low frequency when a chain moves synchronou
with a field. In this case it turns out that the tension in t
chain arising due to the shearing normal forces is less t
magnetic force holding the particles together and the ch
behaves as an inextensible rod. In the region of the comp
sion stresses they are balanced by the reaction forces d
the hard cores of the magnetic particles. Let us consider
chain of magnetic dipoles with hard core radiusa. Let the
angle of the chain axis withx axis beu but the angle of the
field w. If the external magnetic field strength is larger th
magnetic field strength due to neighboring particles in
chain then the anglea which the magnetization makes wit
x axis is close tou. The energy of the particle interactin
with its two neighbors in the chain is

E52mH0 cos~w2a!12U,

where

U5
m2

~2a!3
„123 cos2~a2u!….

The condition]E/]a50 for the magnetic torque on the pa
ticle K gives

K5mH0 sin~w2a!5
6m2

~2a!3
sin 2~w2u!.

FIG. 8. Tangent angle in the center of the rod at critical f
quency.
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As a result the torque per length unitk5K/2a is

k5
6m2

~2a!4
sin 2~w2u!.

It is easy to see that the normal shearing forceFn522Fu
52/2a]U/]u526m2/(2a)4 sin 2(w2u) arising due to the
magnetic interactions between neighboring particles is eq
to its valueFn52k in the model of an inextensible mag
netic rod without momentum stresses. In the case when
curvature radius of the rod is large enough in comparis
with its length the tension in the rodL is determined by the
shearing normal force

L l5
1

R

6m2

~2a!4
sin 2~u2w!, ~21!

which corresponds to that obtained from the relation Eq.~7!
when the following substitution

2p2a2x2H0
2

m11
→ 6m2

~2a!4
~22!

is done. Introducing the phase lagb5w2u5vt2u Eq. ~21!
can be integrated as

L5
6m2

~2a!4

1

2
~cos 2b21! ~23!

@b(61)50 since the normal shearing force at the ends
the chain vanishes#. In a steady case when the rod rotat
synchronously with the applied field

dvn

dl
5v.

This relation, accounting for the expression of the norm
force Eq.~6!, when the force due to the curvature elasticity
neglected, gives

d

dl S Lb l2
6m2

~2a!4

d

dl
sin 2b D 5zv. ~24!

Substituting the expression~23! into the relation~24! we
obtain

d2

dl2
S 2

6m2

~2a!4

1

2
b2

3

4

6m2

~2a!4
sin 2b D 5zv.

As a result the equation for the tangent angle reads

6m2

~2a!4
~ 3

2 sin 2b1b!5zv~L22 l 2!. ~25!

This is the relation obtained in a model of an inextensi
magnetic rod when the curvature elasticity of the rod is
glected. Since the functionF(b)5 3

2 sin 2b1b on the left-
hand side of Eq.~25! is not monotonous there is the critica

-

4-5
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frequency at which the jump of tangent angle takes place
this condition disintegration of chain occurs. The value of
critical frequency can be found from the maximal value
function F(b) which takes place atbc5p/22 1

2 arccos 1/3.
Accounting for relationz54ph/ ln L/a1c @6# and express-
ing the magnetic moment of particle asm5M4p/3a3,
whereM5xpH0 @15# we have for the critical frequency o
the chain ofN52L/2a particles the relation

MaN252p~ 3
2 sin 2bc1bc!S ln

L

a
1cD . ~26!

Here the Mason numberMa512hv/M2 according to the
notation of the paper@14# is introduced. Relation~23! shows
that with the increase of the Mason number the numbe
the particlesN which can be held together by attractive ma
netic force diminishes as

N5Aconst

Ma
,

whereconstaccording to the relation~23! has order of mag-
nitude 6. This is what is observed in experiments~see, for
example, Fig. 3 in Ref.@14#! where diminishing of the num
ber of aggregated magnetic particles starts at the Ma
number value about 1. It should be noted that at critical va
of the Mason number the condition for existence of the ch
of the magnetic particles

L1Fr<0 ~27!

is satisfied, whereFr is the magnetic interaction force

Fr52
]U

]r
5

3m2

~2a!4
„123 cos2~w2u!…

5
3m2

~2a!4
~2 1

2 2 3
2 cos 2b!,

holding particles together. Indeed according to the relat
~19! the left-hand side of the condition~27! is

3m2

~2a!4 S 2
3

2
2

cos 2b

2 D,0,

which justifies the applicability of the model of an inexte
sible magnetic rod for the description of the chain of ma
netic particles in a rotating field. For the Mason numb
larger than critical the chain breaks. We believe that the
model for description of this phenomenon should account
the anisotropy of the bending elasticity of the chain of t
magnetic particles which will be considered elsewhere@20#.
It should be remarked that breaking of the chains, which
long enough, sustains some kind of the self-organized crit
state@24# in which the chains are growing due to axial co
lescence on one hand and are breaking if the size is la
than critical on the other hand. Since the characteristic
02140
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distribution of the chains arising due to the competition
these processes remains unknown at the present mome
seems impossible to make quantitative comparisons with
isting experimental data on birefringence and dichroism
the magnetorheological suspensions in a rotating fi
@12,14#.

Concerning the relation~22! it should also be remarked
that, apart from termb on the left side, it is close to the
relation obtained in Ref.@15# in the frame of the discrete
model of the magnetic particle chain. This relation written
terms of the notations of Ref.@15# is (Ma853/32pMa)

sin 2b5
32

9~ ln L/a1c!
Ma8N2X12S l

L D 2C,
where the right-hand side differs by multiplier 2/9(lnL/a
1c) from the relation given in Ref.@15#. It should be also
remarked that since the functionF(b) on the left-hand side
of the relation~22! is no monotonous the hysteretic phenom
ena in the range of the angles in the center of a ch
@11°,54°# are possible. This behavior possibly has been
marked in the numerical simulations of the chain of the m
netic particles in Ref.@15# and the terms of brittle and ductil
failure for two kinds of the chain breaking connected w
this hysteretic behavior were introduced. Thus we belie
that the model of an inextensible magnetic rod can also
applied to the description of the chains of unlinked magne
particles held together by the magnetic attraction forces. T
model, extended to account for different details, may p
the same role in understanding of the behavior of the m
netorheological suspensions which Kirchhoff’s model of t
elastic rod plays in the study of DNA and other macrom
ecules@25#.

V. CONCLUSIONS

We have shown that the flexible magnetic chains ha
quite a rich behavior under the action of the rotating ma
netic field. At low frequency of the magnetic field the rod h
a bent shape rotating synchronously with the applied fie
The phase lag of the center of the rod increases with
frequency of a rotating field. At the critical frequenc
which—for the considered range of parameters—is prop
tional to the square of the field strength asynchronous reg
of the rod motion arises. This may be described by a sim
model neglecting tangential motion of the rod. The para
eters of the considered model correspond to the real exis
systems and the results of our simulations can be chec
experimentally. It is illustrated in particular cases that t
considered model reproduces the phenomena observed
perimentally for the magnetic particle chains in magn
torheological suspensions. The model gives a general fra
work for the description of various phenomena
magnetorheological suspensions.
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